Dimensionality Reduction:

Theoretical Perspective on Practical Measures

Nova Ora Fandina

Hebrew University, Israel fandina@gmail.com

Joint work with

Yair Bartal, Hebrew University, Israel, yair@cs.huji.ac.il Ofer Neiman, Ben Gurion University, Israel, neimano@cs.bgu.ac.il

NeurIPS19

www.cs.huji.ac.il/~fandina

Metric Dimensionality Reduction

background

Given a <u>high-dimensional</u> data set X embed it into a <u>k-dimensional</u> Y

with *small error* on the distances

How to do we measure the error? How small the error can be?

Most of you probably use dim. red. in your work or research: PCA/MDS/Isomap...

- Visualization, clustering, similarity search, feature extraction and more...
- In ML: often used as a first step before applying further methods

The main message of this talk: Use the random projection dim. reduction (JL), as we proved that it has (asymptotically) smallest possible error on distances

What Is Error? In Practice

background

A dimensionality reduction method is good if it has a small **average** error

--- for each pair, compute an error and take the average over all pairs

The most basic and commonly used in practice average-case measures:

Multiplicative error: $dist_f(u, v)$

 $\max\left\{expans_f(u,v), contr_f(u,v)\right\}$

Average distortion

$$\ell_q \operatorname{-}\operatorname{dist}(\mathsf{f}) = \left(\frac{\sum_{u,v \in X} \left(\operatorname{dist}_f(u,v)\right)^q}{\binom{n}{2}}\right)^{1/q}$$

σ -distortion

$$|\frac{expans_f(u,v)}{average \ of(expans_f(u,v))} - 1|^q$$

Additive error of a pair

$$|d_{new}(u,v) - d_{old}(u,v)|$$

Stress/Energy/REM Measures normalized average of additive errors

Relative Error Measure

$$\left(\frac{|d_{new}(u,v) - d_{old}(u,v)|}{\min\{d_{new}(u,v), d_{old}(u,v)\}}\right)^{q}$$

In Practice "A method is good if it has a small average error"

- Widely used by practitioners to evaluate the quality of a method
- Various <u>heuristics</u> aim to minimize an average error [PCA/Isomap/MDS]
- No *rigorous theoretical* analysis for what can be achieved for each measure

In Theory "A method is good if it has small $\max_{u,v \in X} \{dis_f(u,v)\}$ error"

[JL84] Johnosn-Lindenstrauss map

Project an *n*-point Euclidean set into a random subspace of $\sim \log n / \epsilon^2$ dimesnions, then the *worst-case. error* is $1 + \epsilon$

No embeddings with small average error values

Bridging the Gap between Theory and Practice questions and results

The first theoretical analysis, almost tight upper and lower bounds for all measures

Theorem 1: Given an *n*-point Euclidean set, embed it into *k*-dims. with the JL map (Gaussian entries implementation). Then, with constant probability:

	$1 \le q < \sqrt{k}$	$\sqrt{k} \le q \le k$	q = k	$k \le q \le \infty$
ℓ_q -dist $(f) =$	$1 + O\left(1/\sqrt{k}\right)$	1 + O(q/k)	$(\log n)^{O(1/k)}$	$n^{O(1/k-1/q)}$

*Tight for $q \ge \sqrt{k}$ *Phase transition: choose $k \gg q$

 $\mathbf{Stress}_{\mathbf{q}} \setminus \mathbf{Energy}_{\mathbf{q}} \setminus \mathbf{REM}_{\mathbf{q}} \setminus \boldsymbol{\sigma} \cdot \mathbf{dist} = \mathcal{O}(\sqrt{q/k}) \qquad 1 \le q \le k$

*The bounds are tight for $q \ge 2$

*Also holds simultaneously for all q

Bridging the Gap between Theory and Practice questions and results

Approximating the optimal embedding[Computing an optimum is NP-hard]*The first algorithm with theoretical guarantees on the approx. factor

Theorem 2: For any finite metric space X, for $k \ge 3$ and $2 \le q < k$, there is a random. poly-time algorithm that embeds X into k-dim. Euclidean space, s.t. with constant probability:

$$l_q \operatorname{-dist}(F) = \left(1 + O\left(\frac{1}{\sqrt{k}} + \frac{q}{k-q}\right)\right) \cdot OPT \qquad Measure_q(F) = O(1) \cdot OPT + O\left(\sqrt{q/k}\right)$$

Proof: Convex Programming [computes an optimal embedding into high-dim.]

+ JL map [reduces the dimension into k]

Empirical Experiments

results

Comparison of the JL based methods to the existing heuristics

 ℓ_q -distortion and REM: superiority of JL to Isomap and PCA $q = 5, k \in [3, 30]$

Non-Euclidean input space: superiority of the JL-based method to Isomap and MDS

JL dramatically outperforms the other methods for all the range of values of *k*!

Take-Home Message: If you were scrolling through the news feed in Facebook thus far, here is the summary slide

• JL transform is near optimal for (practical) dimensionality reduction

• A guidance on how to choose the target dimension k: pick $k \gg q$

• Algorithm for approximating an optimal embedding, with theoretical guarantees

