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Metric Dimensionality Reduction                                              background

Given a high-dimensional data set 𝑋 embed it into a k-dimensional 𝑌

with small error on the distances

Most of you probably use dim. red. in your work or research: PCA/MDS/Isomap…

▸ Visualization, clustering, similarity search, feature extraction and more…

▸ In ML: often used as a first step before applying further methods  

The main message of this talk: Use the random projection dim. reduction (JL),
as we proved that it has (asymptotically) smallest possible error on distances

2

How to do we measure the error?                   

How small the error can be?



What Is Error?   In Practice                background

A dimensionality reduction method is good if it has a small average error

--- for each pair, compute an error and take the average over all pairs

The most basic and commonly used in practice average-case measures:

Multiplicative error: 𝑑𝑖𝑠𝑡𝑓(𝑢, 𝑣)

max 𝑒𝑥𝑝𝑎𝑛𝑠𝑓 𝑢, 𝑣 , 𝑐𝑜𝑛𝑡𝑟𝑓(𝑢, 𝑣)

Average distortion

ℓ1- dist(f)=
σ𝑢,𝑣∈𝑋 𝑑𝑖𝑠𝑡𝑓 𝑢,𝑣

𝑛
2
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ℓ𝑞- dist(f) =
σ𝑢,𝑣∈𝑋 𝑑𝑖𝑠𝑡𝑓 𝑢,𝑣

𝑞

𝑛
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1/𝑞

|
𝑒𝑥𝑝𝑎𝑛𝑠𝑓(𝑢,𝑣)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓(𝑒𝑥𝑝𝑎𝑛𝑠𝑓(𝑢,𝑣))
− 1 |𝑞

𝝈-distortion

Additive error of a pair

|𝑑𝑛𝑒𝑤 𝑢, 𝑣 − 𝑑𝑜𝑙𝑑(𝑢, 𝑣)|

Stress/Energy/REM Measures  
normalized average of additive errors

Relative Error Measure 

𝑑𝑛𝑒𝑤 𝑢, 𝑣 − 𝑑𝑜𝑙𝑑 𝑢, 𝑣

min 𝑑𝑛𝑒𝑤 𝑢, 𝑣 , 𝑑𝑜𝑙𝑑 𝑢, 𝑣

𝑞



In Practice   “A method is good if it has a small average error”

▸ Widely used by practitioners to evaluate the quality of a method 

▸ Various heuristics aim to minimize an average error [PCA/Isomap/MDS]

▸ No rigorous theoretical analysis for what can be achieved for each measure

In Theory    “A method is good if it has small max
𝑢,𝑣∈𝑋

{𝑑𝑖𝑠𝑓(𝑢, 𝑣)} error”

▸ [JL84] Johnosn-Lindenstrauss map

Project an 𝑛-point Euclidean set into a random subspace 
of  ~ log 𝑛 /𝜖2 dimesnions, then the worst-case. error is  1 + 𝜖

▸ No embeddings with small average error values
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Bridging the Gap between Theory and Practice    questions and results

The first theoretical analysis, almost tight upper and lower bounds for all measures 

Theorem 1:  Given an 𝑛-point Euclidean set, embed it into 𝑘-dims. with the JL map 
(Gaussian entries implementation). Then, with constant probability:

ℓ𝒒-dist 𝒇 =

*The bounds are tight for 𝑞 ≥ 2 *Also holds simultaneously for all 𝑞
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𝐒𝐭𝐫𝐞𝐬𝐬𝐪\𝐄𝐧𝐞𝐫𝐠𝐲𝐪\𝐑𝐄𝐌𝐪\𝛔-dist =

1 ≤ 𝑞 < 𝑘 𝑘 ≤ 𝑞 ≤ 𝑘 𝑞 = 𝑘 𝑘 ≤ 𝑞 ≤ ∞

1 + 𝑂 1/ 𝑘 1 + 𝑂 𝑞/𝑘 log 𝑛 𝑂(1/𝑘) 𝑛𝑂 1/𝑘−1/𝑞

𝑂( 𝑞/𝑘) 1 ≤ 𝑞 ≤ 𝑘

*Tight for 𝑞 ≥ 𝑘 *Phase transition: choose 𝑘 ≫ 𝑞



Bridging the Gap between Theory and Practice   questions and results

Approximating the optimal embedding [Computing an optimum is NP-hard]

*The 𝒇𝒊𝒓𝒔𝒕 algorithm with theoretical guarantees on the approx. factor

Theorem 2:  For any finite metric space X, for 𝑘 ≥ 3 and 2 ≤ 𝑞 < 𝑘, there is a 
random. poly-time algorithm that embeds X into k-dim. Euclidean space, 

s.t. with constant probability: 

𝑙𝑞-dist 𝐹 = 𝟏 + 𝑶
𝟏

𝒌
+

𝒒

𝒌−𝒒
⋅ 𝑶𝑷𝑻 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑞 𝐹 = 𝑶 𝟏 ⋅ 𝑶𝑷𝑻 + 𝑶 𝒒/𝒌

Proof:  Convex Programming [computes an optimal embedding into high-dim.]   

+  JL map [reduces the dimension into 𝑘]
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Empirical Experiments                           results

Comparison of the JL based methods to the existing heuristics

ℓ𝒒-distortion and REM:  superiority of JL to Isomap and PCA
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𝑞 = 5, 𝑘 ∈ [3, 30]

Non-Euclidean input space: superiority of the JL-based method to Isomap and MDS

JL dramatically outperforms the other methods 

for all the range of values of k!



Take-Home Message:  If you were scrolling  through the news feed in Facebook

thus far, here is the summary slide 

• JL transform is near optimal for (practical) dimensionality reduction

• A guidance on how to choose the target dimension k:   pick 𝑘 ≫ 𝑞

• Algorithm for approximating an optimal embedding, with theoretical 

guarantees

THANKS
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