Dimensionality Reduction:

Theoretical Perspective on Practical Measures

NeurIPS19

Nova Ora Fandina

Hebrew University, Israel
fandina@gmail.com

Joint work with

Yair Bartal, Hebrew University, Israel, yair@cs.huji.ac.il
Ofer Neiman, Ben Gurion University, Israel, neimano@cs.bgu.ac.il

Metric Dimensionality Reduction

Given a high-dimensional data set X embed it into a k-dimensional Y

with small error on the distances

How to do we measure the error?
How small the error can be?

Most of you probably use dim. red. in your work or research: PCA/MDS/Isomap...

- Visualization, clustering, similarity search, feature extraction and more...
- In ML: often used as a first step before applying further methods

The main message of this talk: Use the random projection dim. reduction (JL), as we proved that it has (asymptotically) smallest possible error on distances

What Is Error? In Practice

A dimensionality reduction method is good if it has a small average error
--- for each pair, compute an error and take the average over all pairs
The most basic and commonly used in practice average-case measures:

Multiplicative error: $\operatorname{dist}_{f}(u, v)$
$\max \left\{\operatorname{expans}_{f}(u, v), \operatorname{contr}_{f}(u, v)\right\}$

Average distortion

$$
\ell_{q^{-}}-\operatorname{dist}(f)=\left(\frac{\sum_{u, v \in X}\left(\operatorname{dist}_{f}(u, v)\right)^{q}}{\binom{n}{2}}\right)^{1 / q}
$$

σ-distortion

$$
\left|\frac{\operatorname{expans}_{f}(u, v)}{\operatorname{average} \text { of }\left(\operatorname{expans}_{f}(u, v)\right)}-1\right|^{q}
$$

Additive error of a pair

$$
\left|d_{n e w}(u, v)-d_{o l d}(u, v)\right|
$$

Stress/Energy/REM Measures normalized average of additive errors

Relative Error Measure

$$
\left(\frac{\left|d_{\text {new }}(u, v)-d_{\text {old }}(u, v)\right|}{\min \left\{d_{\text {new }}(u, v), d_{\text {old }}(u, v)\right\}}\right)^{q}
$$

In Practice "A method is good if it has a small average error"

- Widely used by practitioners to evaluate the quality of a method
- Various heuristics aim to minimize an average error [PCA/Isomap/MDS]
- No rigorous theoretical analysis for what can be achieved for each measure

In Theory "A method is good if it has small $\max _{u, v \in X}\left\{\operatorname{dis}_{f}(u, v)\right\}$ error"

- [JL84] Johnosn-Lindenstrauss map

Project an n-point Euclidean set into a random subspace of $\sim \log n / \epsilon^{2}$ dimesnions, then the worst-case. error is $1+\epsilon$

- No embeddings with small average error values

Bridging the Gap between Theory and Practice questions and results

The first theoretical analysis, almost tight upper and lower bounds for all measures

Theorem 1: Given an n-point Euclidean set, embed it into k-dims. with the JL map (Gaussian entries implementation). Then, with constant probability:

	$1 \leq q<\sqrt{k}$	$\sqrt{k} \leq q \leq k$	$q=k$	$k \leq q \leq \infty$
$\ell_{q}-\operatorname{dist}(f)=$	$1+O(1 / \sqrt{k})$	$1+O(q / k)$	$(\log n)^{O(1 / k)}$	$n^{o(1 / k-1 / q)}$

Stress $_{\mathbf{q}} \backslash$ Energy $_{\mathbf{q}} \backslash \mathbf{R E M}_{\mathbf{q}} \backslash \boldsymbol{\sigma}$-dist $=O(\sqrt{q / k}) \quad 1 \leq q \leq k$
*The bounds are tight for $q \geq 2 \quad$ *Also holds simultaneously for all q

Bridging the Gap between Theory and Practice questions and results

Approximating the optimal embedding [Computing an optimum is NP-hard]
*The first algorithm with theoretical guarantees on the approx. factor

Theorem 2: For any finite metric space X, for $k \geq 3$ and $2 \leq q<k$, there is a random. poly-time algorithm that embeds X into $k-d i m$. Euclidean space, s.t. with constant probability:
$l_{q}-\operatorname{dist}(F)=\left(\mathbf{1}+\boldsymbol{O}\left(\frac{\mathbf{1}}{\sqrt{\boldsymbol{k}}}+\frac{\boldsymbol{q}}{\boldsymbol{k}-\boldsymbol{q}}\right)\right) \cdot \boldsymbol{O P T} \quad \operatorname{Measure}_{q}(F)=\boldsymbol{O}(\mathbf{1}) \cdot \boldsymbol{O P T}+\boldsymbol{O}(\sqrt{\boldsymbol{q} / \boldsymbol{k}})$

Proof: Convex Programming [computes an optimal embedding into high-dim.] $+J L$ map [reduces the dimension into k]

Empirical Experiments

Comparison of the JL based methods to the existing heuristics
$\ell_{\boldsymbol{q}}$-distortion and REM: superiority of JL to Isomap and PCA $q=5, k \in[3,30]$

Non-Euclidean input space: superiority of the JL-based method to Isomap and MDS

JL dramatically outperforms the other methods for all the range of values of k !

Take-Home Message: If you were scrolling through the news feed in Facebook thus far, here is the summary slide

- JL transform is near optimal for (practical) dimensionality reduction
- A guidance on how to choose the target dimension k : pick $k \gg q$
- Algorithm for approximating an optimal embedding, with theoretical guarantees

